A Maternal Factor Unique to Ascidians Silences the Germline via Binding to P-TEFb and RNAP II Regulation

نویسندگان

  • Gaku Kumano
  • Naohito Takatori
  • Takefumi Negishi
  • Tatsuki Takada
  • Hiroki Nishida
چکیده

Suppression of zygotic transcription in early embryonic germline cells is tightly linked to their separation from the somatic lineage. Many invertebrate embryos utilize localized maternal factors that are successively inherited by the germline cells for silencing the germline. Germline quiescence has also been associated with the underphosphorylation of Ser2 of the C-terminal domain (CTD-Ser2) of RNA polymerase II [1-3]. Here, using the ascidian Halocynthia roretzi, we identified a first deuterostome example of a maternally localized factor, posterior end mark (PEM), which globally represses germline transcription. PEM knockdown resulted in ectopic transcription and ectopic phosphorylation of CTD-Ser2 in the germline. Overexpression of PEM abolished all transcription and led to the underphosphorylation of CTD-Ser2 in the somatic cells. PEM protein was reiteratively detected in the nucleus of the germline cells and coimmunoprecipitated with CDK9, a component of posterior transcription elongation factor b (P-TEFb). These results suggest that nonhomologous proteins, PEM and Pgc of Drosophila [3-5] and PIE-1 of C. elegans [1, 6, 7], repress germline gene expression through analogous functions: by keeping CTD-Ser2 underphosphorylated through binding to the P-TEFb complex. The present study is an interesting example of evolutionary constraint on how a mechanism of germline silencing can evolve in diverse animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SR Proteins Collaborate with 7SK and Promoter-Associated Nascent RNA to Release Paused Polymerase

RNAP II is frequently paused near gene promoters in mammals, and its transition to productive elongation requires active recruitment of P-TEFb, a cyclin-dependent kinase for RNAP II and other key transcription elongation factors. A fraction of P-TEFb is sequestered in an inhibitory complex containing the 7SK noncoding RNA, but it has been unclear how P-TEFb is switched from the 7SK complex to R...

متن کامل

Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.

Activation of the p53 pathway mediates cellular responses to diverse forms of stress. Here we report that the p53 target gene p21(CIP1) is regulated by stress at post-initiation steps through conversion of paused RNA polymerase II (RNAP II) into an elongating form. High-resolution chromatin immunoprecipitation assays (ChIP) demonstrate that p53-dependent activation of p21(CIP1) transcription af...

متن کامل

HEXIM1 regulates 17beta-estradiol/estrogen receptor-alpha-mediated expression of cyclin D1 in mammary cells via modulation of P-TEFb.

Estrogen receptor alpha (ERalpha) plays a key role in mammary gland development and is implicated in breast cancer through the transcriptional regulation of genes linked to proliferation and apoptosis. We previously reported that hexamethylene bisacetamide inducible protein 1 (HEXIM1) inhibits the activity of ligand-bound ERalpha and bridges a functional interaction between ERalpha and positive...

متن کامل

The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA.

The HIV type 1 (HIV-1) Tat protein stimulates transcription elongation by recruiting P-TEFb (CDK9/cyclin T1) to the transactivation response (TAR) RNA structure. Tat-induced CDK9 kinase has been shown to phosphorylate Ser-5 of RNA polymerase II (RNAP II) C-terminal domain (CTD). Results presented here demonstrate that Tat-induced Ser-5 phosphorylation of CTD by P-TEFb stimulates the guanylyltra...

متن کامل

Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay

The elongation phase of transcription by RNA polymerase II (RNAP II) is controlled by a carefully orchestrated series of interactions with both negative and positive factors. However, due to the limitations of current methods and techniques, not much is known about whether and how these proteins physically associate with the engaged polymerases. To gain insight into the detailed mechanisms invo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011